Venom resistance in kingsnakes - Reptilenesia
A kingsnake eating a rattlesnake |
You often hear people say that kingsnakes are resistant or immune to the venom of copperheads, cottonmouths, and rattlesnakes. There is a subtle difference between the meaning of these two words.
Resistance is any physiological ability to tolerate or counteract the effects of a toxin or disease. Like many things in biology, resistance is not an all-or-nothing status, but a gradient. High enough resistance can result in immunity, where the toxin or disease has negligible or no effects.
A kingsnake eating a cottonmouth |
It is not how kingsnake resistance to viper venom works. Kingsnake resistance is evolved rather than acquired. This means that kingsnakes are born resistant to venom. As far as we know, their resistance levels are fixed for life & don’t change with age or exposure. This has happened over a long time through natural selection, over many generations of kingsnakes. We don't actually have a very exact understanding of the physiological and molecular mechanisms behind how kingsnakes resist the toxic effects of viper venom. At least some of their resistance comes from antibodies—chemicals in their blood that interfere with the venom—because mice injected with kingsnake blood survive viper venom better than those that aren't, and the chemical composition of kingsnake blood changes after exposure to viper venom.
A kingsnake eating a western hognose snake |
A major difference is that, unlike nations or humans, animals cannot plan for the future and decide to invest more energy in research & development of novel or better weapons technology for future generations. Instead, co-evolutionary arms races happen through natural selection. What start out as tiny variations in toxin resistance can be magnified over many generations.
A kingsnake and a copperhead biting one another |
A mongoose eating a boomslang |
Kingsnakes also eat coralsnakes, but amazingly they are not immune to the venom of Eastern Coralsnakes (Micrurus fulvius)—kingsnakes injected with coralsnake venom die quickly, and kingsnake blood is 0% effective at neutralizing venom proteins from coralsnakes. Presumably they are able to catch and consume coralsnakes without getting bitten. This could be because coralsnakes often eat other snakes, so perhaps their venom is more difficult for kingsnakes to evolve resistance against. Or, perhaps coralsnakes are rare or dangerous prey for kingsnakes, and it’s possible but not worth it for them to evolve resistance.
A milksnake constricting a Dekay's brownsnake |
Fight of the Mongoose and the Serpent Armies An 1850 folio from the Mahabharata |
A mountain kingsnake constricting a skink |
1 Creating a vaccine against snake venom is harder than creating one against an infectious disease that is caused by a virus or a bacterium. There are pit viper venom vaccines available for dogs and horses, made from the venom of Western Diamondback Rattlesnakes, but none are available for humans. Additionally, the canine vaccines must be given twice per year, immediate veterinary care is still required, & protection against other species of venomous snakes is poor, so the technology has a long way to go.↩
2 The most famous co-evolutionary arms race is between toxin-resistant gartersnakes & tetrodotoxin-defended newts in the Pacific Northwest of the US & Canada, although there are many others, such as that between most pathogens & the immune systems of their hosts, between brood parasites such as cuckoos & their hosts, and between bad-tasting plants and herbivores.↩
ACKNOWLEDGMENTS
If you want to know more, I'd suggest chapter 3 of Christie Wilcox's book Venomous, from which I drew while researching & writing this article. Thanks to Connie Wade, Pierson Hill, Alan Cressler, Joe McDonald, Elana Erasmus, and the Los Angeles County Museum of Art [public domain] via Wikimedia Commons for providing their images for this article. Thanks to Laura Connelly for reading a draft of this article.
REFERENCES
A kingsnake eating a ringneck snake |
Bdolah, A., E. Kochva, M. Ovadia, S. Kinamon and Z. Wollberg. 1997. Resistance of the egyptian mongoose to sarafotoxins. Toxicon 35:1251-1261 <abstract>
Bonnett, D. E. and S. I. Guttman. 1971. Inhibition of moccasin (Agkistrodon piscivoris) venom proteolytic activity by the serum of the Florida king snake (Lampropeltis getulus floridana). Toxicon 9:417-425 <abstract>
Carpenter, C. C. and J. C. Gillingham. 1975. Postural responses to kingsnakes by crotaline snakes. Herpetologica 31:293-302 <PDF>
Cates, C. C., E. V. Valore, M. A. Couto, G. W. Lawson, and J. G. McCabe. 2015. Comparison of the protective effect of a commercially available western diamondback rattlesnake toxoid vaccine for dogs against envenomation of mice with western diamondback rattlesnake (Crotalus atrox), northern Pacific rattlesnake (Crotalus oreganus oreganus), and southern Pacific rattlesnake (Crotalus oreganus helleri) venom. American Journal of Veterinary Research 76:272-279 <PDF>
Darawshi, S., U. Motro, and Y. Leshem. 2006. The ecology of the Short-toed Eagle (Circaetus gallicus) in the Judean Slopes Israel. The Rufford Foundation, RSG project, detailed final report <project>
Darawshi, S., U. Motro, and Y. Leshem. 2006. The ecology of the Short-toed Eagle (Circaetus gallicus) in the Judean Slopes Israel. The Rufford Foundation, RSG project, detailed final report <project>
de Wit, C. A. 1982. Resistance of the prairie vole (Microtus ochrogaster) and the woodrat (Neotoma floridana), in Kansas, to venom of the Osage copperhead (Agkistrodon contortrix phaeogaster). Toxicon 20:709-714 <abstract>
de Wit, C. A. and B. R. Weström. 1987. Venom resistance in the hedgehog, Erinaceus europaeus: purification and identification of macroglobulin inhibitors as plasma antihemorrhagic factors. Toxicon 25:315-323 <abstract>
Drabeck, D. H., A. M. Dean, and S. A. Jansa. 2015. Why the honey badger don't care: Convergent evolution of venom-targeted nicotinic acetylcholine receptors in mammals that survive venomous snake bites. Toxicon 99:68-72 <academia.edu>
Heatwole, H. and J. Powell. 1998. Resistance of eels (Gymnothorax) to the venom of sea kraits (Laticauda colubrina): a test of coevolution. Toxicon 36:619-625 <PDF>
Holding, M. L., D. H. Drabeck, S. A. Jansa, and H. L. Gibbs. 2016. Venom Resistance as a Model for Understanding the Molecular Basis of Complex Coevolutionary Adaptations. Integrative and Comparative Biology 10.1093/icb/icw082 <full-text>
Jansa, S. A. and R. S. Voss. 2011. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers. PLoS ONE 6:e20997 <full-text>
Keegan, H. L. and T. F. Andrews. 1942. Effects of crotalid venom on North American snakes. Copeia 1942:251-254 <PDF>
Keegan, H. L. 1944. Indigo snakes feeding upon poisonous snakes. Copeia 1944:59 <PDF>
Lee, C.-Y., editor. 1979. Snake Venoms. Springer-Verlag, Berlin. <full-text>
Liu, Y.-B. and K. Xu. 1990. Lack of the blocking effect of cobrotoxin from Naja naja atra venom on neuromuscular transmission in isolated nerve muscle preparations from poisonous and non-poisonous snakes. Toxicon 28:1071-1076 <abstract>
Lomonte, B., L. Cerdas, J. Gené, and J. Gutierrez. 1982. Neutralization of local effects of the terciopelo (Bothrops asper) venom by blood serum of the colubrid snake Clelia clelia. Toxicon 20:571-579 <abstract>
Moussatché, H. and J. Perales. 1989. Factors underlying the natural resistance of animals against snake venoms. Memorias do Instituto Oswaldo Cruz 84:391-394 <PDF>
Neves-Ferreira, A. G., N. Cardinale, S. L. Rocha, J. Perales, and G. B. Domont. 2000. Isolation and characterization of DM40 and DM43, two snake venom metalloproteinase inhibitors from Didelphis marsupialis serum. Biochimica et Biophysica Acta (BBA)-General Subjects 1474:309-320 <abstract>
Nichol, A. A., V. Douglas, and L. Peck. 1933. On the immunity of rattlesnakes to their venom. Copeia 1933:211-213 <PDF>
Nichol, A. A., V. Douglas, and L. Peck. 1933. On the immunity of rattlesnakes to their venom. Copeia 1933:211-213 <PDF>
Ovadia, M. and E. Kochva. 1977. Neutralization of Viperidae and Elapidae snake venoms by sera of different animals. Toxicon 15:541-547 <abstract>
Perez, J. C., W. C. Haws, V. E. Garcia, and B. M. Jennings III. 1978. Resistance of warm-blooded animals to snake venoms. Toxicon 16:375-383 <abstract>
Perez, J. C., W. C. Haws, and C. H. Hatch. 1978. Resistance of woodrats (Neotoma micropus) to Crotalus atrox venom. Toxicon 16:198-200 <abstract>
Perez, J. C., S. Pichyangkul, and V. E. Garcia. 1979. The resistance of three species of warm-blooded animals to western diamondback rattlesnake (Crotalus atrox) venom. Toxicon 17:601-607 <abstract>
Philpot, V. 1954. Neutralization of snake venom in vitro by serum from the nonvenomous Japanese snake Elaphe quadrivirgata. Herpetologica 10:158-160 <PDF>
Philpot, V. and R. G. Smith. 1950. Neutralization of pit viper venom by king snake serum. Experimental Biology and Medicine 74:521-523 <abstract>
Philpot, V. B., E. Ezekiel, Y. Laseter, R. G. Yaeger, and R. L. Stjernholm. 1978. Neutralization of crotalid venoms by fractions from snake sera. Toxicon 16:603-609 <abstract>
Poran, N. S., R. G. Coss, and E. Benjamini. 1987. Resistance of California ground squirrels (Spermophilus beecheyi) to the venom of the northern Pacific rattlesnake (Crotalus viridis oreganus): a study of adaptive variation. Toxicon 25:767-777 <abstract>
Swanson, P. L. 1946. Effects of snake venoms on snakes. Copeia 1946:242-249 <full-text>
Swanson, P. L. 1946. Effects of snake venoms on snakes. Copeia 1946:242-249 <full-text>
Voss, R. S. and S. A. Jansa. 2012. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Biological Reviews 87:822-837 <PDF>
Weinstein, S. A., C. F. DeWitt, and L. A. Smith. 1992. Variability of venom-neutralizing properties of serum from snakes of the colubrid genus Lampropeltis. Journal of Herpetology 26:452-461 <PDF>
Weldon, P. J. 1982. Responses to ophiophagous snakes by snakes of the genus Thamnophis. Copeia 1982:788-794 <PDF>
Weldon, P. J. and G. M. Burghardt. 1979. The ophiophage defensive response in crotaline snakes: extension to new taxa. Journal of Chemical Ecology 5:141-151 <PDF>
Weldon, P. J. and F. M. Schell. 1984. Responses by king snakes (Lampropeltis getulus) to chemicals from colubrid and crotaline snakes. Journal of Chemical Ecology 10:1509-1520 <ResearchGate>
Werner, R. M. and J. A. Vick. 1977. Resistance of the opossum (Didelphis virginiana) to envenomation by snakes of the family Crotalidae. Toxicon 15:29-32 <PDF>
Wilcox, C. 2016. Venomous: How Earth's Deadliest Creatures Mastered Biochemistry. Scientific American. <official page>
Witsil, A. J., R. J. Wells, C. Woods, and S. Rao. 2015. 272 cases of rattlesnake envenomation in dogs: Demographics and treatment including safety of F(ab')2 antivenom use in 236 patients. Toxicon 105:19-26 <abstract>
Life is Short, but Snakes are Long by Andrew M. Durso is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.